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Resolution of phase ambiguities in electron-impact ionization amplitudes
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The formal theory of atomic ionization by electron impact relates the breakup amplitude to an integral
expression involving the exact wave function and an unperturbed final state that contains two Coulomb
functions with effective, noninteger charges. This integral expression has an associated phase factor that
diverges logarithmically on an infinite volume unless the effective charges are chosen to satisfy a kinematic
relationship, the so-called ‘‘Peterkop condition.’’ We derive the explicit form of the Peterkop phase for two
commonly used models of electron-hydrogen ionization, the Temkin-Poet model and the collinear model. We
show that the formal theory can be used to identify and remove this physically insignificant, volume-dependent
phase from amplitudes computed using numerically stable integral expressions that do not satisfy the Peterkop
condition.
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There are a variety of theoretical techniques capable
producing accurate total electron-impact ionization cr
sections, even at collision energies close to threshold.
accurate prediction of differential ionization cross section
another matter entirely and to date only a few methods h
produced stable differential ionization cross sections at
impact energies over the entire range of available ene
sharing. The method of exterior complex scaling~ECS! is
one such method and relies on a~complex! scaling of the
radial electron coordinates outside a~hyper!sphere of finite
volume to obviate the need for explicit imposition of thre
body asymptotic boundary conditions in computing the sc
tering wave function@1#. Early implementations of the
method @2# relied on a direct evaluation of the quantum
mechanical flux through a finite hypersurface, followed
numerical extrapolation to infinite volume to obtain physic
cross sections. We have since developed more efficient m
ods based on integral expressions for the scattering am
tude @3#.

The use of integral expressions for the ionization am
tude in numerical calculations raises some interesting for
questions. In the formal theory developed some 40 years
Peterkop@4# and Rudge and Seaton@5# considered the ques
tion of how to define the breakup amplitude in terms of
integral of the form

I 5E C~r1 ,r2!~H2E!C0~r1 ,r2!dr1dr2 , ~1!

whereC0 is a reference function corresponding to the fin
state with two electrons in the continuum, whose form
formal theory seeks to define, andC is the full solution of
the Schro¨dinger equation satisfying the correct bounda
conditions for ionization. These authors pointed out tha
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the final state is represented as a product of Coulomb wa
C05f2k1

(r1 ;z1)f2k2
(r2 ;z2), then this integral is related

to the breakup amplitude,f (k1 ,k2), by

I} f ~k1 ,k2! lim
r→`

exp$ iF~z1 ,k1 ;z2 ,k2!ln~2Kr!%, ~2!

wherer is the hyperradius defining the volume of integr
tion.

The main point is that the integral in Eq.~1! is propor-
tional to the breakup amplitude, but with a volum
dependent overall ‘‘Peterkop phase,’’unlessthe charges,z1
and z2, associated with the two Coulomb functions satis
the dynamical ‘‘Peterkop condition’’F(z1 ,k1 ;z2 ,k2)50
~which we discuss in detail below!. The phase in question i
an overall phase in the amplitude for a specific physical p
cess, and as such does not change any physical observ

However, for numerical calculations carried out over
finite volume, we have shown that the use of effecti
charges other than 1 leads to serious numerical proble
because only Coulomb functions withz51 are orthogonal to
the bound states of the target atom@6#. On a finite volume,
there are of course no problems with divergent phase fact
but one might naturally be led to question whether amp
tudes calculated with Coulomb functions that do not sati
the Peterkop condition give physically correct cross sectio
We have addressed this point in several earlier papers@6,7#
and shown it to be inconsequential@3#. Nevertheless, the
issue of calculating the correct phase has recently been ra
@8#, prompting us to examine this subject in more detail.

We show below that the logarithmic component of t
phase in Eq.~2! is entirely predictable and can be remov
from the computed amplitude, so long as the volume of
integration in Eq.~1! is well defined. We emphasize that it
not necessary to remove this phase in any practical calc
tion. The only interest in doing so is to compare the results
different computational methods. No currently known phy
cal observable can depend on it.
©2003 The American Physical Society01-1
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To illustrate our discussion, we use two popular tw
dimensional models of electron-hydrogen ionization:
Temkin-Poet, orS-wave, model and the collinear model. Th
first step is to establish the asymptotic form of the scatter
wave function with two electrons in the continuum. The r
dial Schrödinger equation for a two-electron problem wi
no angular momentum is

F2
1

2

]2

]r 1
2

2
1

2

]2

]r 2
2

1V~r 1 ,r 2!GC5EC, ~3!

whereE5K2/2 is the total energy andV(r 1 ,r 2) is the full
interaction potential,

V~r 1 ,r 2!52
1

r 1
2

1

r 2
1V2 . ~4!

andV2 is the ~model! two-body interaction. In hyperspher
cal coordinates@r5Ar 1

21r 2
2, tan(a)5r 2 /r 1], Eq. ~3! be-

comes, withC5F/r1/2,

F2
1

2

]2

]r2
2

1

8r2
2

1

2r2

]2

]a2
2

z~a!

r GF5EF, ~5!

where the interaction potential has been rewritten as

V~r 1 ,r 2!52
z~a!

r
. ~6!

Following Rudge’s approach@9# for the full ionization
problem, we rearrange the Schro¨dinger equation as

FK2

2
1

1

2

]2

]r2
1

1

8r2
1

z~a!

r GF52
1

2r2

]2

]a2
F, ~7!

and formally solve this using the Coulomb Green’s functi
with a as a parameter on the left-hand side. The Gree
function G(r,r8) is expressed in terms of regular and ou
going functionsF andH with asymptotic forms

F~z,K,r!;sin@ f ~r!#, r→`,

H~z,K,r!;exp@ i f ~r!#, r→` ~8!

and

f ~r!5Kr1
z

K
ln~2Kr!1

p

4
1argGS 1

2
2 i

z

K D ~9!

as

G~r,r8!52
2

K
F~z,K,r,!H~z,K,r.!, ~10!

and satisfies the equation

FK2

2
1

1

2

]2

]r2
1

1

8r2
1

z~a!

r GG~r,r8!5d~r2r8!.

~11!
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It immediately follows that the asymptotic form of the wav
function can be written as

C~r 1 ,r 2!52
1

Ar
E

0

`

dr8G~r,r8!
1

2r82

]2

]a2
F~r8,a!

;
r→`

A~a!

Ar
expF i S Kr1

z~a!

K
ln~2Kr! D G ,

~12!

with the ionization amplitudeA(a) identified as

A~a!5
1

K
expH i Fp4 1argGS 1

2
2 i

z~a!

K D G J
3E

0

`

drF~z,K,r!
1

2r2

]2

]a2
F~r,a!. ~13!

A knowledge of the asymptotic form of the wave functio
is all that is required to develop integral expressions for
scattering amplitude. We again follow the course outlined
Peterkop@4# and by Rudge and Seaton@5# and consider the
integral in Eq.~1! for two radial variables. To evaluate th
integral I in this case we again switch to hyperspherical c
ordinates and use Green’s theorem to express it as a su
integral:

I 52
1

2

lim
r→`E0

p/2FC ]C0

]r
2C0

]C

]r Grda. ~14!

We now chooseC0 to be the product of two radial Coulom
functions with effective chargesz1 and z2 and momentak1
andk2 defined as

k15K cos~b!, ~15!

k25K sin~b!.

With these definitions, we have

C0~r 1 ,r 2!5fk1
~r 1 ;z1!fk2

~r 2 ;z2!, ~16!

fk~r ;z!;sinS kr1
z

k
ln~2kr !1sk~z! D , r→`,

where

sk~z!5argGS 12 i
z

kD . ~17!

After substituting the asymptotic forms given in Eqs.~12!
and ~16! into Eq. ~14!, we can express the integral as

I 5
1

2

lim
r→`

eiKr

Ar
E

0

p/2

daA~a!ei [Kr1z(a)/K ln(2Kr)]F i z~a!

kr
2

]

]r

2
1

2rGFsinS k1r cosa1
z1

k1
ln~2k1r cosa!1sk1

~z1! D G
3FsinS k2r cosa1

z2

k2
ln~2k2r cosa!1sk2

~z2! D G . ~18!
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The integration can be carried out using the method of
tionary phase@10#, which is exact in the limitr→`. The
algebra is tedious, but straightforward, and will not be rep
duced here. The key identity needed in the derivation is
stationary phase result:

E
0

p/2

f ~a!sin@k1r cos~a!1g~a!#sin@k2r sin~a!1h~a!#

;
r→`

2
1

2
f ~a0!A2p

Kr
cosS Kr1g~a0!

1h~a0!2
p

4 D , ~19!

where the stationary pointa0 is given by the condition
tana05k2 /k1 or, in view of Eq. ~15!, a05b. It is then
possible, by performing the integral overa in Eq. ~18! be-
fore differentiating with respect tor, to derive the desired
result

I
5

limr→`
2

1

4
A2pKiA~b!expF2 i S Q~k1 ,z1!1Q~k2 ,z2!

1
3p

4 D GexpF i S z~b!

K
2

z1

k1
2

z2

k2
D ln~2Kr!G1O~1/r!, ~20!

with

Q~k;z!5sk~z!12
z

k
ln~k/K !. ~21!

The integral defined by Eq.~1! is thus proportional to the
physical breakup amplitude times a logarithmic phase fac
which diverges in the limitr→`, unless the effective
charges are chosen to satisfy the condition@4#

z~b!

K
5

z1

k1
1

z2

k2
. ~22!

On any finite volume, the ‘‘Peterkop phase,’’f[(z(b)/K
2z1 /k12z2 /k2)ln(2Kr), is well defined.

We now turn to the two models previously mentioned.
the Temkin-Poet model, the full interaction potential is r
placed by its spherical average,V(r 1 ,r 2)521/r 121/r 2
11/r .521/r , which, according to Eqs.~6! and ~20!, de-
fines the Peterkop phase as

fTP5S 1

k,
2

z1

k1
2

z2

k2
D ln~2Kr!. ~23!

Not surprisingly, the choicez150 and z251 makes the
phase vanish for allk1>k2. In the Temkin-Poet model, th
separable nature of the potential leads to a complete scr
ing of the fast electron by the slow electron, so that
product of a free function and a Coulomb function is t
‘‘correct’’ final state in this case, and provides the prop
boundary condition for an exact numerical treatment@11#.
This fact is peculiar to the Temkin-Poet case, however,
does not extend to other two-dimensional~2D! models, nor
to the full problem. In our previous work on calulating ion
ization amplitudes, we showed that it is essential to main
02070
a-

-
e

r,

-
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e

r

d
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orthogonality between the Coulomb distorted waves and
bound hydrogenic states and therefore remove any spur
contributions to the breakup amplitude that arise from d
crete two-body excitation channels. This leads naturally
the choicez15z251, as explained at length in Refs.@7# and
@6#. The choice z15z251 gives a Peterkop phase of
21/k.ln(2Kr).

The collinear model usesV(r 1 ,r 2)521/r 121/r 211/(r 1
1r 2). In that case, the Peterkop phase is

fcol5
1

K F ~12z1!

cos~b!
1

~12z2!

sin~b!
2

1

@cos~b!1sin~b!#G ln~2Kr!.

~24!

For this case, there is nob-independent choice of effectiv

FIG. 1. Phase of the computed amplitude for the singly diff
ential cross section for breakup at a total energy of 1.5 hartrees
different 2D models ofe-H ionization. Upper panel, Temkin-Poe
model; lower panel, collinear model. The curves labeled unc
rected were computed using Eq.~14! at a fixed value of the hyper
radius. The corrected curves are obtained by removing the ap
priate volume dependent portions of the phase for each mode
discussed in the text.
1-3
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charges that can lead to a vanishing phase. The ECS ch
z15z251 gives a phase of21/(k11k2)ln(2Kr).

We now turn to some numerical demonstrations. We c
ried out ECS calculations ofe-H ionization for the singlet
spin case at a total energy of 1.5 hartree for both the Tem
Poet and collinear models. The scattered wave functi
were generated on a two-dimensional square grid the
portion of which extended to 300 Bohr inr 1 andr 2. We used
the finite-element/discrete variable representation previo
described@12# to solve the 2D Schro¨dinger equation. The
ionization amplitude was computed at a fixed value of
hyperradius, using Eq.~14!, and two Coulomb functions with
z51 in the final state. The surface integrals were evalua
at hyperradii of 250 and 300 bohrs. The resulting phases
a function of ejected electron energy, are shown in Fig
For the Temkin-Poet case, shown in the upper panel of
1, the phase of the computed amplitude is seen to depen
hyperradius. By adding 1/k.ln(2Kr) to the computed phase
we produce a result that is independent ofr to the numerical
accuracy of the calculations. By further addingQ(k.,1) we
produce the phase that is plotted, which should correspon
the phase one would obtain in an exact numerical integra
of the Temkin-Poet model@11#. The results for the collinea
case are shown in the lower panel of Fig. 1. In this ca
addition of 1/(k11k2)ln(2Kr) to the computed phase aga
produces ar-independent result.

So what have we learned from this exercise? We h
shown that for any 2D model of electron impact ionizatio
the breakup amplitude, computed from a numerically gen
ated wave function on a finite hypersphere, will have a ph
component, which we have called the ‘‘Peterkop phase,’’ t
depends logarithmically on the hyperradius. For any
model, this phase, which can depend only on the hypera
b, can easily be predicted, calculated and, if desired,
moved from the total phase. For the full six-dimension
problem, the Peterkop phase, which is given by

F 1

k1
1

1

k2
2

1

uk12k2u
2

z1

k1
2

z2

k2
G ln~2Kr!, ~25!
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depends on the speed and direction of ejection of both e
trons and can, in principle, be removed, but not so easily
in the models considered here. Most approaches, includ
ECS, use a partial-wave decomposition of the full wa
function and the various numerically computedL compo-
nents are combined coherently to produce the total ioniza
amplitude. This construction effectively includes the P
terkop phase if the various pieces are all computed with
same hyperradius. This is an essential point, since an in
sistent choice of hyperradii would produce phase incon
tencies between the various partial-wave components of
amplitude and, consequently, incorrect doubly or triply d
ferential cross sections. When the Peterkop phase is corre
constructed, it factors out of the total amplitude and ma
no contribution to any observable cross section@3#.

We have also shown that the choicez150, z251, which
is used in most basis-set close-coupling approaches,
eliminates the Peterkop phase in the special case of
Temkin-Poet model. For the full problem, this would not
the case. Moreover, since there is really no well-defined
persphere in such approaches, apart from the ‘‘volume’’
fined by the range of the basis sets employed, it would se
that the task of maintaining phase consistency between
various partial-wave amplitudes is not as straightforward.
deed, recently published work on triply differential ioniz
tion cross sections fore-H using the convergent close
coupling method@13# has stressed the importance of using
single basis-set scaling parameter~orbital exponent! for all
partial waves to avoid apparent convergence to an incor
result. Since this parameter controls the range of the ba
we can only speculate that this finding reflects the neces
of maintaining a consistent phase convention between
various partial-wave components of the amplitude.
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